In Vitro Effects of Dental Monomer Exposure – Dependence on the Cell Culture Model -

Methacrylate monomers are major components of resin-based biomaterials. The polymerization of these materials is never complete, and methacrylates leaking from cured materials cause exposure of patients. Only some selected methacrylates have thoroughly been tested for possible interaction with living cells. In the current study, we compared the effects of 2-hydroxyethyl-methacrylate (HEMA; a carefully studied methacrylate) […]

Proteome Changes Indicate Oxidative Stress and Protein Damage after Methacrylate Exposure in Human Monocyte Cell Line -

To study the initial changes in the proteome in a human monocyte cell line after exposure to methacrylate monomer

In vitro element release and biological aspects of base-metal alloys for metal-ceramic applications -

Abstract Objective The aims of this study were to investigate the release of element from, and the biological response in vitro to, cobalt–chromium alloys and other base–metal alloys used for the fabrication of metal-ceramic restorations. Material and methods: Eighteen different alloys were investigated. Nine cobalt–chromium alloys, three nickel–chromium alloys, two cobalt–chromium–iron alloys, one palladium–silver alloy, […]

DNA damage, cell-cycle arrest and apoptosis induced in BEAS-2B cells by 2-hydroxyethyl methacrylate (HEMA). -

The methacrylate monomer 2-hydroxyethyl methacrylate (HEMA) is commonly used in resin-based dental restorative materials. These materials are cured in situ and HEMA and other monomers have been identified in ambient air during dental surgery. In vitro studies have demonstrated a toxic potential of methacrylates, and concerns have been raised regarding possible health effects due to inhalation. In this study we have investigated the mechanisms of HEMA-induced toxicity in the human lung epithelial cell line BEAS-2B..

Pattern of cell death after in vitro exposure to GDMA, TEGDMA, HEMA and two compomer extracts -

In vitro exposure to chemical compounds in dental materials may cause cell death by apoptosis, necrosis or a combination of both. The aim of this paper was to evaluate aqueous extracts of freshly cured compomers Freedom (SDI) and F2000 (3M ESPE), and constituents identified in the extracts, GDMA (glycerol dimethacrylate), TEGDMA (triethylene glycol dimethacrylate) and HEMA (2-hydroxyethyl methacrylate) for their ability to induce necrosis and apoptosis in primary rat alveolar macrophages and the J744A1 macrophage cell line.