Objectives: In vitro exposure to chemical compounds in dental materials may cause cell death by apoptosis, necrosis or a combination of both. The aim of this paper was to evaluate aqueous extracts of freshly cured compomers Freedom (SDI) and F2000 (3M ESPE), and constituents identified in the extracts, GDMA (glycerol dimethacrylate), TEGDMA (triethylene glycol dimethacrylate) and HEMA (2-hydroxyethyl methacrylate) for their ability to induce necrosis and apoptosis in primary rat alveolar macrophages and the J744A1 macrophage cell line.
Methods: The cells were exposed to either extracts of freshly cured samples of the products or to one of the constituents identified in the extracts. Cytotoxicity and necrosis were assayed by MTT test and fluorescence microscopy, respectively. Apoptosis was assayed by fluorescence microscopy and flow cytometry.
Results: Concentration-related apoptosis and necrosis were found in both cell types after exposure to extracts from Freedom and F2000. GDMA appeared to be the most cytotoxic of the tested constituents in the J744A1 cell line as evaluated by the MTT test. TEGDMA was more cytotoxic than HEMA using the MTT test and fluorescence microscopy, whereas HEMA caused a greater accumulation of apoptotic cells seen by fluorescence microscopy and flow cytometry. For various concentrations of HEMA and TEGDMA, the extent of apoptosis appeared inversely related to the cytotoxicity evaluated by the MTT test.
Significance: As an apoptotic response elicits less inflammatory response in the surrounding tissues than a necrotic process, the role of cell death pattern could be important for the evaluation of the biocompatibility of dental materials.

Pattern of cell death after in vitro exposure to GDMA, TEGDMA, HEMA and two compomer extracts
Becher R, Kopperud HM, Al RH, Samuelsen JT, Morisbak E, Dahlman HJ, Lilleaas E, Dahl JE
Dental Materials 2006; 22: 630-640.